

Daily Tutorial Sheet-1 Level-1	Daily Tutorial Sheet-1	Level-1
--------------------------------	------------------------	---------

- **1.(B)** Denatured alcohol = rectified spirit + Naphtha + methanol
- 2.(A) Anti-Markovnikov's rule

$$\textbf{3.(D)} \quad \text{C_2H}_5\text{CHO} \xrightarrow{\begin{array}{c} 1. \text{ RMgBr} \\ 2. \text{ H_3O}^+ \end{array}} \text{C_2H}_5 \text{ CH-R (2°alcohol)}$$

$$\label{eq:Hamiltonian} \begin{array}{c} O \\ || \\ H-COOEt \xrightarrow{\quad RMgBr \quad } H-C-R \xrightarrow{\quad 1. \ RMgBr \quad } R_2CHOH \text{(2° alcohol)} \end{array}$$

- **4.(C)** Acid catalysed hydration follows Markovnikov's rule and that is formed from most stable carbocations. The stability of carbocations follows: $3^{\circ} > 2^{\circ} >> 1^{\circ}$
- **5.(B)** Starch $\xrightarrow{\text{Diastase}}$ Maltose $\xrightarrow{\text{Maltase}}$ Glucose $\xrightarrow{\text{Zymase}}$ Ethyl alcohol
- **6.(D)** $CH_3MgI + HCHO \longrightarrow \xrightarrow{H_3O^+} CH_3CH_2OH$
- **7.(D)** Glucose/fructose $\xrightarrow{\text{Zymase}}$ Ethyl alcohol + CO₂
- **8.(B)** LiAlH₄/ether does not reduce > C = C < bond
- **9.(A)** $CO + H_2 \longrightarrow CH_3OH$ Water gas
- **10.(B)** OH $\xrightarrow{P/Br_2}$ Br (1°/2° alcohol give bromide not 3° alcohol)
- **11.(B)** 3° alcohols react fastest with Lucas Reagent. (ZnCl₂ / HCl)
- **12.(A)** $RCH_2CH_2OH \xrightarrow{PBr_3} RCH_2CH_2Br \xrightarrow{KCN} RCH_2CH_2CN \xrightarrow{H_3O^+} RCH_2CH_2COOH$
- **13.(C)** C₂H₅OH: H bonding and higher Molecular mass than CH₃OH
- 14.(A) ZnCl₂ acts a Lewis acid which coordinates with lone pair over 'O'-atom.
- **15.(D)** HI > HBr > HCl > HF, HI is strongest acid and I^- is strongest nucleophile.